• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Sat, 04.05.24

Search results


July 2019
Paola Di Benedetto PhD, Piero Ruscitti MD, Vasiliki Liakouli MD PhD, Paola Cipriani MD PhD and Roberto Giacomelli MD PhD

Microvascular damage, clinically expressed by Raynaud’s phenomenon, is generally the first symptom of the disease and the injured vascular cells, both endothelial and perivascular, may transdifferentiate to myofibroblasts, thus leading to collagen deposition in the tissue and consequent fibrosis. Systemic sclerosis (SSc, scleroderma) is complex disease characterized by autoimmunity, vasculopathy, and fibrosis. It has been shown that microvascular damage may be the first symptom of SSc. Injured endothelial cells and pericytes may transdifferentiate into myofibroblasts, the cells responsible for fibrosis and collagen deposition in the tissue. Based on these factors, the process of myofibroblast generation may link two pivotal events of SSc: microvascular damage and fibrosis. Understanding the development, differentiation, and function of myofibroblasts is therefore crucial to individuate early pathogenetic events and develop new therapeutic target for SSc, a condition in which no disease-modifying agents are available. The aim of this review was to discuss the possible origins of myofibroblasts in SSc, highlighting the process of endothelial mesenchymal transition and pericytes to myofibroblast transition and to show how these events may contribute to pathogenesis of the disease.

April 2009
O. Sadan, N. Shemesh, Y. Cohen, E. Melamed and D. Offen

Background: Stem cell-based therapy is a promising approach for the treatment of neurodegenerative disease. In our laboratory, a novel protocol has been developed to induce bone marrow-derived mesenchymal stem cells into neurotrophic factor-secreting cells. These cells produce and secrete factors such as BDNF (brain-derived neurotrophic factor) and GDNF (glial-derived neurotrophic factor).

Objectives: To evaluate the migratory capacity and efficacy of NTF-SC[1] in animal models of Parkinson's disease and Huntington's disease.

Methods: MSCs[2] underwent two-phase medium-based induction. An efficacy study was conducted on the 6-hydroxydopamine-induced lesion, a rat model for Parkinson's disease. Cells were transplanted on the day of 6-OHDA[3] administration, and amphetamine-induced rotations were measured as a primary behavioral index. In a second experiment, migratory behavior was examined by transplanting cells a distance from a quinolinic acid-induced striatal lesion, a rat model for Huntington's disease. Migration, in vivo, was monitored using longitudinal magnetic resonance imaging scans followed by histology.

Results: NTF-SCs attenuated amphetamine-induced rotations by 45%. HPLC analysis demonstrated a marked decrease in dopamine depletion, post-cellular treatment. Moreover, histological assessments revealed that the engrafted cells migrated and acted to regenerate the damaged striatal dopaminergic nerve terminal network. In a preliminary work on an animal model for Huntington's disease, we demonstrated by high resolution MR images and correlating histology that induced cells migrated along the internal capsule towards the QA[4]-induced lesion.

Conclusions: The induced MSCs are a potential therapy for neurodegenerative diseases, due both to their NTF secretion and their ability to migrate towards the diseased tissue.






[1] NTF-SC = neurotrophic factor-secreting cells



[2] MSCs = mesenchymal stem cells



[3] 6-OHDA = 6-hydroxydopamine



[4] QA = quinolinic acid



 
E.M. Horwitz and W.R. Prather

Mesenchymal stem cells, or mesenchymal stromal cells, have emerged as a major new cell technology with a diverse spectrum of potential clinical applications. MSCs[1] were originally conceived as stem/progenitor cells to rebuild diseased or damaged tissues. Over the last 14 years, since the first report of MSC infusions in patients, the cells have been shown to suppress graft vs. host disease, stimulate linear growth in a genetic disorder of bone, and foster engraftment of haplo-identical hematopoietic stem cells. In all cases, few, if any, MSCs were identified at the site of clinical activity. This experience suggests a remarkable clinical potential, but a different general mechanism of action. Systemically infused MSCs seem to exert a therapeutic effect effect through the release of cytokines that act on local, or perhaps distant, target tissues. Rather than serving as stem cells to repair tissues, they serve as cellular factories that secrete mediators to stimulate the repair of tissues or other beneficial effects. Since both the tissue source of MSCs and the ex vivo expansion system may significantly impact the cytokine expression profile, these parameters may be critically important determinants of clinical activity. Furthermore, cell processing protocols may be developed to optimize the cell product for a specific clinical indication. For example, MSC-like cells isolated from placenta and expanded in a three-dimensional bioreactor have recently been shown to increase blood flow in critical limb ischemia. Future efforts to understand the cytokine expression profile will undoubtedly expand the range of MSC clinical applications.






[1] MSCs = mesenchymal stem cells


Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel